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Neural activity that persists long after stimulus presentation is a
biological correlate of short-term memory. Variability in spiking
activity causes persistent states to drift over time, ultimately de-
grading memory. Models of short-term memory often assume that
the input fluctuations to neural populations are independent across
cells, a feature that attenuates population-level variability and
stabilizes persistent activity. However, this assumption is at odds
withexperimental recordings frompairsof cortical neurons showing
that both the input currents and output spike trains are correlated.
It remains unclear how correlated variability affects the stability
of persistent activity and the performance of cognitive tasks that it
supports. We consider the stochastic long-timescale attractor dy-
namics of pairs of mutually inhibitory populations of spiking neu-
rons. In these networks, persistent activity was less variable when
correlated variability was globally distributed across both popula-
tions compared with the case when correlations were locally
distributed only within each population. Using a reduced firing rate
model with a continuum of persistent states, we show that, when
inputfluctuations are correlated across both populations, they drive
firing rate fluctuations orthogonal to the persistent state attractor,
thereby causing minimal stochastic drift. Using these insights, we
establish that distributing correlated fluctuations globally as op-
posed to locally improves network’s performance on a two-interval,
delayed response discrimination task. Our work shows that the cor-
relation structure of input fluctuations to a network is an important
factor when determining long-timescale, persistent population
spiking activity.
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The dynamics of the nervous system are inherently stochastic at
all levels from ion channel (1) to single cell (2), neural pop-

ulation (3, 4), and whole-brain activity (5). A central challenge in
neuroscience is to relate the neural variability expressed at the
cellular and circuit levels to the variability of cognitive behavior.
Short-term memory (6–8) and decision-making (9, 10) are tasks
where this link can be established, because there is trial to trial
variability of both subject response and associated neural corre-
lates. Furthermore, neural representations based on probabilistic
codes (11) as opposed to trial averaged responses have been
successful at capturing key aspects of these behaviors (12), and
spiking variability is inherent in these cognitive theories. However,
relating the statistical structure of the inputs that cause spiking
variability to the variability of population-wide neural activity is
often difficult (13–16).
Spiking activity with timescales much longer than the time-

scales of typical synapses and cellular membrane potentials is an
established neural correlate of working memory and decision-
making. Most famously, persistent activity lasting for many sec-
onds has been reported in prefrontal cortices of primates (6, 17,
18) and rodents (19) during delayed response tasks and premotor
areas driving oculomotor gaze fixation (20, 21). In these cases, an
initial transient stimulus recruits persistent firing activity, pro-
viding a neural basis for short-term working memory. These

observations have led to models, both of large-scale networks of
spiking neurons (22–26) and reduced attractor-based frameworks
(25–34), aimed at reproducing a continuum of persistent states. A
prevailing assumption in all spiking network models of persistent
activity (to our knowledge) is that neurons receive statistically
independent input fluctuations from sources external to the net-
work. This assumption results in population activity with limited
dynamic variability because of population averaging (16, 35), a
distinct advantage when building networks with the primary task
of maintaining fixed firing rates over long timescales. However,
the dense architecture of cortex often provides pairs of neurons
common inputs from overlapping presynaptic targets (36–38).
External sensory input or intrinsic cortical dynamics may provide
correlated input fluctuations to pairs of cortical cells through this
presynaptic overlap (39–42), leading to trial to trial covariability
of output spike trains (3). Although reported correlations are
sometimes small (3, 15), even a minuscule pairwise correlation
can lead to very large population variability when responses are
pooled over large groups of neurons (16, 35). Hence, neuronal
circuits that promote robust persistent activity despite such cor-
related fluctuations are critical for proper cortical function.
In a two-interval, delayed response discrimination task, the work

by Romo et al. (18) combined short-term memory and decision
tasks and identified populations of neurons in primate prefrontal
cortex that participate in both these computations. Machens et al.
(26) presented amodel withmutual inhibition between two distinct
populations of neurons that captured both the persistent activity
and competitive decision dynamics seen in experiment. The model
used independent fluctuations to all neurons; however, simulta-
neous recordings from neuron pairs in the same (43) and related
(44) experiments show positive trial-to-trial covariability, even for
neurons with opposite stimulus tuning. It is well known that mu-
tually inhibitory networks with deterministic dynamics suppress the
influence of input similarities, while amplifying input differences
(27, 45).We build on these results and show that the stability of the
persistent state in a trial variable stochastic network is enhanced
when weakly correlated input fluctuations are distributed globally
across neurons in both model populations compared with the case
when correlations are only local within each population. A reduced
random walk attractor model shows that the increased stability is
caused by an opposing interaction between the anticorrelating
mutual inhibitory circuitry and the globally correlating fluctuations.
Finally, this enhanced stability of the memory state in the presence
of global correlations improves task performance by a large degree.
Thus, although past studies have identified constructive roles for
correlations in static population coding frameworks (43, 46, 47), we
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analyze how correlated variability affects the dynamic stability of
persistent neural activity.

Results
Persistent State Spiking Model. Recurrent inhibition between
populations of neurons produces a competitive, winner take all
dynamic, and it is a common architecture in decision-making (9,
28, 29) and persistent activity circuits (21, 26, 27). We considered
the spiking responses of a network of leaky integrate and fire
model neurons grouped into two functional populations (labeled
A and B) having strong and symmetric interpopulation inhibition
(Fig. 1A and SI Materials and Methods). The populations were
presented with a static excitatory stimulus for an initial period of
500 ms, after which the stimulus was removed; the resulting long-
timescale population dynamics were analyzed (Fig. 1B). The
population response (ensemble-averaged firing rate) (Materials
and Methods) was persistent, with rates remaining at near con-
stant levels for seconds after stimulus removal. Furthermore,
there was a continuum of such persistent states, each determined
by different initial stimulus configurations (three example cases
are shown in Fig. 1 C–E). In this way, the poststimulus activity
was an accurate reflection of the initial stimulus, providing
a model of short-term memory (26).
The network retained memory through a balance of compet-

itive forces. The population with a higher stimulus-evoked firing
rate suppressed the other population, effectively disinhibiting
itself; therefore, it maintained high firing rates after the stimulus

was removed. This balance was dynamically maintained and hence,
sensitive to firing rate fluctuations. In our spiking model, the
membrane potential fluctuations were substantial, consistent
with in vivo neural activity (Fig. 1C). However, the fluctuations
were also independently distributed to all of the neurons, pro-
ducing a relatively asynchronous population dynamic (Fig. 1D).
In this case, population rate variability scaled roughly inversely
to population size. For reasonably sized networks, the population
activity had little variability, allowing rates to remain stable for
long periods of time (Fig. 1E). Thus, despite the significant single
neuron variability, population averaging produced a stable per-
sistent network state. In the next section, we relax the assump-
tion of independent variability and consider the consequences
for the stability of persistent network states.

Global Correlated Variability Preserves Persistent Network States.
The connectivity within cortical networks is dense, with groups of
neurons receiving a significant amount of common synaptic input
(36–38). This overlap of synaptic architecture correlates the
membrane potential fluctuations of distinct neurons, and in sev-
eral cortical areas, the magnitude of correlation can be significant
(39–42). In complex cortical circuits, it is difficult to determine the
precise structure of the joint fluctuations to different neuron
populations. This structure may depend on, for example, physical
proximity (48) or functional similarity (49) between populations.
We studied two simple schemes in which correlated stochastic
inputs were incorporated into our two-population persistent ac-
tivity model. The first scheme was a local framework, in which only
neurons within the same population received correlated inputs
(Fig. 2A, Upper). The second scheme was a global framework, in
which all neurons, both within and between populations, received
a common source of input fluctuations (Fig. 2A, Lower). The local
model assumes that shared input fluctuations respect the net-
work’s functional segregation (population A vs. B), whereas the
global model considers correlated fluctuations that ignore any
network divisions. In both cases, the magnitude of input correla-
tion was small (0.05), meaning that individual neurons still re-
ceived a significant amount of independent variability. Despite
this small degree of pairwise input correlation, its impact was
dramatic at the population level (16, 35), because common fluc-
tuations could not be attenuated through population averaging. In
our model, integrated population variance increased by a factor of
25 compared with the uncorrelated case.
Although both local and global correlation models received

significant population-wide input variability, they nevertheless
supported a continuum of persistent states during the initial
poststimulus period (Fig. S1). To ease presentation, we hereafter
study the symmetric case, where the persistent state has equal rates
for both populations (Fig. 1C–E, blue); however, our results are by
no means limited to the case. For uncorrelated inputs, the persis-
tent state remained stable for long periods (>10 s) after stimulus
removal (example trials are in Fig. 2B, Top). In contrast, local
correlations yielded a persistent state that was stable for a short
period directly after stimulus removal, but the trial-to-trial pop-
ulation firing rates began to drift after a few seconds (example trials
are in Fig. 2B,Middle). Finally, the population rates for the globally
correlated model were stable long after (∼10 s) stimulus removal
(example trials are in Fig. 2B, Bottom). Although the stability for
the global model persistent state was similar to the uncorrelated
model, the overall variability of firing rates was significantly larger,
which is expected from simple pooling arguments (16, 35).
To better quantify the drift in the population rates, we per-

formed a large number of trials (104) and estimated the proba-
bility density of the joint population rates as it evolved over time.
When fluctuations were local, there was a significant drift of the
trial-to-trial population activity along the antidiagonal firing rate
axis (Fig. 2C, Upper and Movie S1). This drift was much reduced
when fluctuations were global (Fig. 2C, Lower and Movie S1).
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Fig. 1. Recurrent inhibition produces a continuum of persistent states in
a spiking network model. (A) Schematic of two populations (A and B) each
having Nð¼ 500Þ leaky integrate and fire neuron models. Neurons between
populations inhibited one another; the time course of a single spike-induced
inhibitory current is shown (Inset). (B) Stimulation protocol showing an initial
stimulus period (<0 s) when populations A and B received distinct stimuli
followed by a long period (>0 s) when the populations received an equal bias.
The colors indicate three example stimulation sequences. (C) Representative
membrane potential traces from a neuron in either population. (D) Spike time
rasters for the entire network. Population membership is indicated on the
vertical axis. (E) The evolution of populations A and B firing rates (Materials
and Methods). Colors in C–E match the stimulation protocols in B.

6296 | www.pnas.org/cgi/doi/10.1073/pnas.1121274109 Polk et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121274109/-/DCSupplemental/pnas.201121274SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121274109/-/DCSupplemental/pnas.201121274SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121274109/-/DCSupplemental/sm01.mov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1121274109/-/DCSupplemental/sm01.mov
www.pnas.org/cgi/doi/10.1073/pnas.1121274109


The trial-to-trial population rate variance and covariance be-
tween populations A and B computed over trials mirrored these
differences (Fig. 2D). Furthermore, although the globally cor-
related model showed time stationary variability, its overall
variability was nevertheless larger than the uncorrelated model
(Fig. 2D), again because of population-wide pooling of activity.
Thus, when the correlations of input fluctuations were global to
the entire network rather than local to subpopulations within the
network, the stability of persistent neural activity was increased.
The correlations between the spike trains of individual neuron

pairs were substantially different for networks with local or global

input correlation. Local input correlations produced a significant
positive spike count correlation for neuron pairs that were within
the same population but an equally strong negative correlation
for neurons that were members of distinct populations (Fig. 2E).
In contrast, global input correlations produced weak pairwise
correlations (Fig. 2E). This attenuation was caused by cancel-
ation mechanisms similar to those operative in balanced cortical
circuits (15). Furthermore, for the model with global input cor-
relations, neuron pairs that were in different populations had
a mean correlation that was positive (0.01), albeit smaller than
the correlation for neurons within the same population (0.02)
(compare blue G with red G curves in Fig. 2E). This finding was
in contrast to the large negative correlation (−0.13) observed for
neurons in different populations when input correlations were
local (compare blue L with blue G curves in Fig. 2E). Paired
recordings in prefrontal cortex of primates (43) participating in
a delayed response task showed a net positive correlation for all
neuron pairings (within-population pairs had a mean correlation
coefficient of 0.15, and across-population pairs had a mean
correlation coefficient of 0.05) (table 1 in ref. 43). Although we
do not expect a quantitative match between our model and the
data, the qualitative match that all correlations were positive
gives strong experimental justification for the global input model.
In total, although globally correlated fluctuations represent a

larger source of overall input covariability, they do not destroy long-
term persistent activity and result in weaker pairwise correlations
than a model with only local correlations. We next study a reduced
framework to uncover the core mechanism for these findings.

Random Walk Firing Rate Model. Phenomenological models often
consider the aggregated firing rate of a population of cells rather
than individual spiking activity (50). In particular, firing rate
models of mutually inhibitory populations have captured key
aspects of decision-making (28, 29) and short-term memory (26)
circuits. We considered a firing rate model of our persistent state
network (Fig. 3A) where the population firing rates rAðtÞ and
rBðtÞ obeyed the stochastic differential equations (Eq. 1)

τ
drA
dt

¼ μ− ðrA þ rBÞ þ σ
� ffiffiffiffiffiffiffiffiffiffi

1− c
p

ξAðtÞ þ
ffiffiffi
c

p
ξcðtÞ

�
[1]

and (Eq. 2)

τ
drB
dt

¼ μ− ðrB þ rAÞ þ σ
� ffiffiffiffiffiffiffiffiffiffi

1− c
p

ξBðtÞ þ
ffiffiffi
c

p
ξcðtÞ

�
; [2]

where μ is a symmetric mean input and τ is the population
timescale. The coupling between the populations caused de-
generacy in the dynamics, with a continuum of neutrally stable
states (i.e., a line attractor) along the antidiagonal rB ¼ μ− rA
(Fig. 3B, green line). The population activity and coupling was
linear to facilitate analysis; for a general class of nonlinear
models, our model is an appropriate limiting case (SI Materials
and Methods and Fig. S2).
Population-wide input fluctuations were modeled by the com-

bination of three Gaussian white noise processes: ξAðtÞ and ξBðtÞ
were private fluctuations to populations A and B, respectively,
and ξcðtÞwas a global fluctuation to the two populations. The total
fluctuations to a population had intensity σ, with the input cor-
relations between populations set by c (Fig. 3A). In our reduced
model, c ¼ 0 corresponds to the local correlation spiking net-
work, whereas c> 0 corresponds to a globally correlated network.
The model is a 2D Ornstein–Uhlenbeck process (51), and the
associated Fokker–Planck equation gave an analytic solution for
the time-dependent probability density PðrA; rB; tÞ (SI Materials
and Methods shows a full derivation).
The density PðrA; rB; tÞ is Gaussian, with a mean ðμ; μÞ and

a time-dependent variance and covariance. Importantly, the
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degeneracy of the model makes the stochastic motion along line
attractor akin to a Brownian walk, having a time-dependent
spread (covariance) proportional to (Eq. 3)

σ2ð1− cÞt: [3]

For the local model (c ¼ 0), the spread ismaximal and covers a large
rangeof the linear attractor as timeelapses (Fig. 3C,UpperandMovie
S2). Fitting the reduced model parameters (σ; c) to the spiking sim-
ulations (SI Materials and Methods) yielded c ¼ 0:963 for the global
network. The large c value resulted from population averaging that
amplified the weak pairwise correlations (Fig. 2E). This finding
caused a much reduced spread along the line attractor for the
global model (Fig. 3C, Lower and Movie S2). The variance and
covariance of the spiking simulation population activity for both
local (Fig. 3D) and global (Fig. 3E) correlationswerewell-matched

to the analytic results from the firing ratemodels. Thus, despite the
complexity of the spiking network, the population activity behaves
like a Brownian walk for moderate timescales, justifying our sim-
plified rate model approach. However, our theoretical expressions
must break down for sufficiently long timescales, because firing
rates in the linear model were unbounded, whereas the firing rates
from the spiking simulations must remain positive.
In total, the structure of mutual inhibition created a line at-

tractor persistent state that was organized along the antidiagonal
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in firing rate coordinates (26). Globally correlated fluctuations
were orthogonal to the direction of instability and thus, best
mitigated drift of the persistent state caused by input fluctuations.

Global Correlations Improve Discrimination in Delayed Response
Task. The motivating experiments for the mutual inhibition
model of persistent activity were from primate prefrontal cortex
recordings during a delayed response, two-interval discrimina-
tion task (18, 26, 43). Briefly, a vibrating input with a fixed fre-
quency was presented to the fingertips, and neurons sensitive to
this stimulus could be grouped into two classes (our populations
A and B) based on their response: neurons either increased or
decreased their firing rate to increasing input frequency (Fig. 4A,
Left). This initial stimulus loaded the network in a specific lo-
cation on the line attractor (Fig. 4B, Left). The stimulus was
removed (Fig. 4A, Center), and the loaded state was maintained
in working memory during a delay period (Fig. 4B, Center). Fi-
nally, a second stimulus was presented, and the monkey was
directed to indicate if the first stimulus vibrated at a frequency
that was faster than the second stimulus (Fig. 4A, Right). This
decision task had the neural correlate that one population’s fir-
ing rate reached a high value, whereas the other decreased its
firing rate, with the specific choice depending on which stimulus
had the higher frequency. The initial model by Machens et al.
(26) replicated this memory and decision task. However, when
input fluctuations were correlated in our model, the sizable trial
to trial variability sometimes caused a misclassification error by
the spiking network (Fig. 4C). We investigated the effects of
local and global correlations on the performance of network
discrimination in the delayed, two-interval discrimination task.
Without loss of generality, we assumed that the first stimulus

(s1) loaded the network to the symmetric ðrA; rBÞ ¼ ðμ; μÞ state.
We computed the density PðrA; rB; t2Þ from the firing rate model,
where t2 ¼ 3s was the presentation time of the second stimulus.
The value of the second stimulus (s2 > s1) defined a line in ðrA; rBÞ
space, and a reasonable approximation to the decision process is
that realizations with joint rates that were below (above) the line
led to correct (incorrect) discriminations (Fig. 4D). For discrim-
inations between first and second stimuli with large differences
ðΔs ¼ s2 − s1Þ, the distance between the loaded firing rate ðμ; μÞ
and the decision line was large. In this case, the decision task was
robust to moderate variability, and both local and global models
performed adequately (Fig. 4D, Left). However, for finer dis-
criminations, the reduction of spread along the line attractor for
global correlations greatly enhanced the probability of correct
decision compared with themodel with local fluctuations (Fig. 4D,
Right). To explore this result, we integrated PðrA; rB; t2Þ below the
decision line to find the probability of correct decision over a large
range of ðΔs; cÞ parameter space (Fig. 4E and SI Materials and
Methods). When jΔsj was small, the probability of correct decision
was dramatically improved with increasing c, whereas for large
jΔsj, the decision process was less affected by c. Finally, we verified
this prediction with simulations of the spiking network during the
decision process for both local and global input correlations (Fig.
4F). For small Δsð¼ 0:5Þ, the presence of global fluctuations in-
creased task performance fromnear 65%correct decision for local
to almost 95% for global input correlations.
In summary, global as opposed to local input correlations

greatly enhanced performance for fine discriminations in a delayed
response task. This enhancement was because of the increased
stability of the persistent state for global correlations, enhancing
the fidelity of the final stimulus comparison.

Discussion
Inhibitory interaction between distinct populations of neurons is
an often proposed mechanism for persistent neural activity. It is
known that mutual inhibition between populations amplifies input
differences to populations while suppressing input similarities (27,

45). However, how these principles operate in a persistent activity
model that exhibits trial to trial variability has not been addressed.
Previous spiking models of persistent activity have assumed that
external input fluctuations are independent for all neurons (22–26,
33), and thus, population pooling attenuates the variability at the
network level (16). Heuristic firing rate models with stochastic
inputs are not limited to small variability, and past work with them
has given insight about how fluctuations promote stochastic drift
along a continuum attractor (33, 34). However, these studies have
also assumed that the fluctuations to distinct populations are un-
correlated, being equivalent to the local correlation model in our
study. Our primary finding was that robust stability of the per-
sistent state required common fluctuating inputs to be globally
distributed over the network as opposed to only locally within each
population. In our spiking model, the recurrent inhibition and
global correlations balance to give overall weak positive pairwise
spike correlations, consistent with the experimental recordings
that motivated the model (43). Finally, this enhanced stability with
global fluctuations improved network performance in a two-
interval, delayed response discrimination task.
Our network modeled functionally segregated populations

that were distinguished by their stimulus preference. Global
correlations to such a network require trial-variable inputs that
are not related to this segregation and rather indiscriminately
correlate the activity of all neurons. Although this assumption is
unreasonable for populations with a clear spatial lateralization
(21, 52), it is appropriate for persistent activity networks in
prefrontal cortex that are involved in working memory (18, 43,
44). In these areas, simultaneous recordings from neuron pairs
show fast-timescale cross-correlagrams of spiking activity peaked
at a zero lag (43, 44), consistent with a source of common input.
The magnitude of output spike train correlation is larger for
neuron pairs that have similar tuning than those pairs with dis-
similar tuning, and therefore, output correlations are related to
population segregation. However, this finding does not neces-
sarily imply that external input correlations are local, because it
is also consistent with neurons in the same population receiving
common inhibition from within the network (this finding is the
case for our network) (Fig. 2E). Recently, mean field techniques
have been developed that can combine internal and external
sources of correlation (15, 53–55). Using these techniques to
analyze the dynamic behavior in our network is an interesting
potential avenue of study.
It is known that the combination of an anticorrelated stimulus

tuning and positive trial to trial correlations improve population-
based codes compared with codes in which neurons have in-
dependent variable activity (46, 47). Furthermore, when deci-
sions involve a comparison between two population rates, a
subtractive computation can benefit from correlated variability
(43). In both of these cases, there is an anticorrelating de-
terministic structure (trial averaged), and thus, positive correla-
tions in stochastic activity (trial variable) best mitigate the impact
of fluctuations on computation. Our model extends this general
principle of improving network function by matching the struc-
ture of network dynamics with the joint structure of stochastic
inputs, to the case of persistent state networks. Other models of
persistent activity involve either recurrent excitation (22, 23) or
feedforward architectures (30). Correlated activity in these net-
works will no doubt also affect persistent neural activity, but how
the structure of input fluctuations will interact with circuit-based
dynamics is unclear and open to future investigation.

Materials and Methods
A detailed description of the spiking network model can be found in SI
Materials and Methods. We let the spike train from neuron i of population
X be yX

i ðtÞ ¼
P

kδðt − tXikÞ, where ftXikg is a set of spike times (X ¼ A;B). The
firing rate of population X over time window ðt − T ; tÞ is the random vari-
able rX ðtÞ ¼ 1

NT

Ð t
t − T

PN
i¼1y

X
i ðt′Þdt′. Population rate variance was measured as
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ÆrX ðtÞ2æ− ÆrX ðtÞæ2, and covariance was measured as ÆrX ðtÞrY ðtÞæ− ÆrX ðtÞæ ÆrY ðtÞæ;
here, Æ·æ is an expectation over trials. We take T ¼ 10 ms, and we use 104

trials to compute population statistics. The reduced firing rate model and
associated analysis are presented in SI Materials and Methods.
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SI Materials and Methods
SpikingModel.The spiking model used in our study is based on the
model presented in the work by Machens et al. (1). The spiking
networks consisted of two populations, each with N ¼ 500 neu-
rons. Neurons were coupled with inhibitory synaptic connections
if they belonged to different populations, whereas there were no
connections between neurons that were members of the same
population.
The membrane potential of neuron i in population X ∈ fA;Bg,

ViX , obeyed (Eq. S1)

C _V iX ¼ gEX
�
VE −ViX

�þ gL
�
VL −VXi

�þ gIX ðtÞ
�
VI −ViX

�

þ σ
� ffiffiffi

c
p

ξcX ðtÞ þ
ffiffiffiffiffiffiffiffiffiffi
1− c

p
ξiX ðtÞ

�
; [S1]

(Eq. S2)

g IX ðtÞ ¼
X
j

wSjY ðtÞ ðY ≠ XÞ; [S2]

and (Eq. S3)

τsyn _SjY ¼ − SjY : [S3]

When a neuron reached its threshold Vth, it emitted a spike
and was reset to Vre. When neuron j in population Y fired, sYj
was incremented by ðsmax − sYj ðtÞÞ=smax, with smax ¼ 7. The ex-
ternal fluctuating terms ξcX ðtÞ and ξiX ðtÞ were independent
Gaussian white noise processes with statistics hξðtÞit ¼ 0 and
hξðtÞξðt′Þit ¼ δðt− t′Þ, where h·it is an expectation over time.
Every neuron received a source of private fluctuations, ξiX ðtÞ,
independent from all other stochastic processes and a source of
common fluctuation, ξcX ðtÞ. In the local correlations model, the
common fluctuations given to population A were independent
from the common fluctuations given to population B (i.e.,
hξcAðtÞξcBðt′Þit ¼ 0). In the global correlations model, the com-
mon fluctuations given to populations A and B were identical
(i.e., ξcAðtÞ ¼ ξcBðtÞ). In both cases, c ¼ 0:05. For the uncorre-
lated model, c ¼ 0 (Fig. 1).
Values of parameters used in the simulation are reported

below.

Simulations were performed using Euler–Maruyama in-
tegration with a time step of 0.1 ms with custom-made Matlab
(Mex) codes.
To control the response of the network during different periods

of the trial, the conductances gEA; g
E
B were modulated according

to the value of the stimuli s. For the loading phase (s = s1), the
conductances were (Eq. S4)

g EX ¼ 2:22þ 0:035 s1 nS [S4]

and (Eq. S5)

g EY ¼ 2:24− 0:035 s1 nS: [S5]

For the maintenance phase (Eq. S6),

g EX ¼ 2 nS [S6]

and (Eq. S7)

g EY ¼ 2 nS: [S7]

For the decision phase (s ¼ s2) (Eq. S8),

g XE ¼ 2:16− :035 s2 nS [S8]

and (Eq. S9)

gYE ¼ 2:14þ :035 s2 nS: [S9]

Population Spike Train Statistics. Let yiX ðtÞ ¼
P

kδðt− t kiX Þ be the
spike train of neuron i in population X, with tkiX ; k ¼ 1;  2;  3 . . .
as the sequence of spikes produced by the neuron. Population
firing rates were computed over a time windows of duration
ðt−T; tÞ (Eq. S10):

riX ðtÞ ¼ 1
NT

Z t

t−T

XN

i¼1

yXi ðt′Þdt′: [S10]

Variance and covariance of the population firing rates were
computed as (Eq. S11)

VarX ¼
D
rX ðtÞ2

E
m
− hrX ðtÞi2m [S11]

and (Eq. S12)

CovAB ¼ hrAðtÞrBðtÞim − hrAðtÞimhrBðtÞim: [S12]

Here, h·im denotes an expectation across different trials indexed
by m; 10,000 trials were used to compute statistics for Figs. 1
and 2, whereas 5,000 trials were used for Fig. 4F. Throughout
the paper, the population measures used a window length of
T ¼ 10 ms.
The pairwise statistics (Fig. 2E) were computed by first com-

puting the spike count niX (Eq. S13):

niX ðtÞ ¼ 1
T

Z t

t−T
yXi ðt′Þdt′: [S13]

The spike count correlation between neuron i of population X
and j or population Y and CorrðiX jY Þ is computed as (Eq. S14)

VarðiXÞ ¼
�
n2iX

�
m;t − hniX i2m;t; [S14]

and (Eq. S15)

CovðiX jY Þ ¼
�
niXnjY

�
m;t − hniX im;t

�
njY

�
m;t; [S15]

and (Eq. S16)

Parameter Value

C 0.2 nF
Vth −55 mV
Vre −61 mV
VE −5 mV
VI −75 mV
τsyn 80 ms
w 0.00116
σ 0:12mVffiffiffiffiffi

10
p
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CorrðiX jY Þ ¼
CovðiX jY Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðiXÞVarðjY Þ

p : [S16]

Here, h·im;t denotes an expectation across trials (m) and time (t).
For the pairwise statistics, T ¼ 100 ms.

Random Walk Firing Rate Model.Our phenomenological model for
the firing rate activity of a pair of mutually coupled neural
populations (Fig. S2A) is (Eq. S17)

τ_rA ¼ − rA þ f ðgαrB þ μÞ þ σ
� ffiffiffi

c
p

ξcðtÞ þ
ffiffiffiffiffiffiffiffiffiffi
1− c

p
ξAðtÞ

�
[S17]

and (Eq. S18)

τ_rB ¼ − rA þ f ðgαrB þ μÞ þ σ
� ffiffiffi

c
p

ξcðtÞ þ
ffiffiffiffiffiffiffiffiffiffi
1− c

p
ξBðtÞ

�
; [S18]

where rAðtÞ and rBðtÞ are the firing rates for populations A and B,
respectively. The static input μ is the bias (symmetric across
populations) that drives each population during the persistent
state period. The constant gα < 0 is the inhibitory coupling be-
tween populations, and τ is the effective timescale of population
activity. Finally, ξAðtÞ and ξBðtÞ are independent Gaussian white
noise processes, whereas ξcðtÞ is another Gaussian white noise
process that is shared between the two populations [in all cases,
hξðtÞit ¼ 0 and hξðtÞξðt′Þit ¼ δðt− t′Þ].
The neural transfer f ðxÞ (Fig. S2B) is monotonically rising in

x and has a nonlinear shape previously proposed (2), because
it accurately mimics the dependence of the mean firing rate re-
sponse of a spiking neuron on a static input x (Eq. S19):

f ðxÞ ¼ x

τ̂rxþ τð1− e−β̂xÞ; [S19]

(Eq. S20)

τ̂r ¼ τr
α
; [S20]

(Eq. S21)

β̂ ¼ αβ; [S21]

and (Eq. S22)

μ ¼ μmax

ð1− μmaxτ̂rÞ
: [S22]

The saturation of f at high x is defined by the absolute refractory
period τ̂r, whereas τ and β̂ control the shape of f for moderate x.
The nonlinearity of f is parameterized by α. The deterministic
nullcline structure rB ¼ nAðrAÞ and rB ¼ nBðrAÞ of the firing rate
model in Eqs. S17 and S18 is given by solutions to rA ¼ f ðgαrB þ μÞ
and rB ¼ f ðgαrA þ μÞ (here, nA and nB are the nullclines of the rA
and rB dynamics, respectively). For every α, there is a value of gα that
produces the optimal line attractor for our nonlinear model (Eqs.
S17 and S18), which is defined by minimizing the integrated square
difference

R rA;max

0 ðnBðrAÞ− nAðrAÞÞ2drA, where rA;max ¼ f ðμmaxÞ. For
α ¼ 1, we find g1 ¼ − 2:190813 (Fig. S2D, dot), producing a rea-
sonable line attractor where nullclines nA and nB overlap significantly
over a large range of ðrA; rBÞ (Fig. S2C). The stochastic model pro-
duces random drift along the line attractor similar to the firing rate
models (three realizations are shown in Fig. S2C).
As α → ∞, the transfer function approaches f ðxÞ ¼ x, lineariz-

ing the rate model. As α grows, the optimal coupling constant gα
monotonically grows, saturating at g∞ ¼ − 1 (Fig. S2D). This
saturation is such that mutual and self-coupling are equal, pro-
ducing a degeneracy in the firing rate model. The linear firing rate
model has a perfect line attractor; nevertheless, its activity mimics
the activity of the nonlinear model (Fig. S2 C and E). The evo-

lution of the variance and covariance of rate activity is quantita-
tively matched between the linear and nonlinear models (Fig.
S2F), further justifying the reduction.

Random Walk Linear Firing Rate Model: Analytic Solution. Our firing
rate model (α → ∞ and g∞ ¼ − 1 in Eqs. S17 and S18) is a two-
variable Ornstein–Uhlenbeck process (3) obeying the stochastic
differential system (Eq. S23):

τ_r ¼ FðrÞ þ ΓξðtÞ [S23]

with (Eq. S24)

r ¼
	
rA
rB



; [S24]

(Eq. S25)

FðrÞ ¼
	
− rA − rB þ I
− rB − rA þ I



; [S25]

(Eq. S26)

Γ ¼
	 ffiffiffiffiffiffiffiffiffiffi

1− c
p

0
ffiffiffi
c

p
0

ffiffiffiffiffiffiffiffiffiffi
1− c

p ffiffiffi
c

p


; [S26]

and (Eq. S27)

ξðtÞ ¼ σ

0
@

ξAðtÞ
ξBðtÞ
ξcðtÞ

1
A: [S27]

We first solve for the eigenvalues λ and eigenvectors u of the
deterministic (σ ¼ 0) system (Eq. S28):

λð1Þ ¼ 0; [S28]

(Eq. S29)

uð1Þ ¼ 1ffiffiffi
2

p
	

1
− 1



; [S29]

(Eq. S30)

λð2Þ ¼ − 2
τ
; [S30]

and (Eq. S31)

uð2Þ ¼ 1ffiffiffi
2

p
	
1
1



: [S31]

We remark that the symmetric neighbor and self-coupling with
g∞ ¼ − 1 produces a zero eigenvalue λð1Þ, with eigenvector
uð1Þ being the line attractor for the persistent state (Fig. 3B,
green line).
The probability density PðrA; rB; tjr0A; r0B; 0Þ obeys the associated

Fokker–Planck (Eq. S32) for Eq. S23:

∂P
∂t

¼
�
∂
∂rA

�rA
τ
þ rB

τ

�
þ ∂
∂rB

�rA
τ
þ rB

τ

��
P

þ σ2

2τ2

�
∂2

∂r2A
þ 2c∂2

∂rA∂rB
þ ∂2

∂r2B

�
P

[S32]

with initial condition (Eq. S33)

PðrA; rB; 0Þ ¼ δ
�
rA − r0A

�
δ
�
rB − r0B

�
: [S33]

We note that the diffusion terms in the Fokker–Planck equation
satisfy the diffusion matrix D (Eq. S34):
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D ¼ σ2

2τ
ΓΓ′ ¼ σ2

2τ

	
1 c
c 1



: [S34]

A Gaussian form for PðrA; rB; t j r0A; r0B; 0Þ satisfies Eq. S32
(Eq. S35):

Pðr; tÞ ¼ 1
2π

ffiffiffiffiffiffiffiffiffiffiffijΣðtÞjp exp
	
−
1
2
ðr−μÞ′ΣðtÞ−1ðr−μÞ



: [S35]

To calculate the covariance matrix ΣðtÞ, we first derive the
Green’s function G using the eigenvalues and eigenvectors from
Eqs. S28–S31. This derivation allows a calculation for the evo-
lution of the density given an initial condition. The entries of G
are given by (Eq. S36)

Gij ¼
X
α¼1;2

�
eλ

ðαÞ tuðαÞi uðαÞj

�
⇒ G ¼

0
BB@

1
2
þ e

− 2t
τ

2
−
1
2
þ e

− 2t
τ

2

−
1
2
þ e

− 2t
τ

2
1
2
þ e

− 2t
τ

2

1
CCA:

[S36]

Using G, we find the time-dependent covariance matrix ΣðtÞ
entries (Eq. S37):

ΣijðtÞ ¼
X
s

Z t

0

Gik Gjs d τ̂ 2Dks; [S37]

and (Eq. S38)

Σ11ðtÞ ¼ Σ22ðtÞ

¼
Z t

0

G11G11 d τ̂ 2D11 þ 2
Z t

0

G11G12 d τ̂ 2D12

þ
Z t

0

G12G12 d τ̂ 2D22

¼ σ2tð1− cÞ
2τ2

þ
σ2ð1þ cÞ

�
τ− τe− 4t

τ

�

8τ2
; [S38]

and (Eq. S39)

Σ12ðtÞ ¼ Σ21ðtÞ

¼ 2
Z t

0

G11G21 d τ̂ 2D11 þ
Z t

0

G11G22 d τ̂ 2D12

þ
Z t

0

G12G21 d τ̂ 2D21

¼ σ2tðc− 1Þ
2τ2

þ
σ2ðcþ 1Þ

�
τ− τe− 4t

τ

�

8τ2
: [S39]

We see that, for large t, the first term dominates, and the variance
and covariance behave as (Eq. S40)

VarðrX Þ ¼ σ2tð1− cÞ
2τ2

[S40]

and (Eq. S41)

CovðrA; rBÞ ¼ σ2tðc− 1Þ
2τ2

: [S41]

To quantitatively compare the reduced model to the spiking
simulations, we fit the two reduced model parameters ðσ; cÞ using
Eqs. S40 and S41. For the spiking model with local fluctuations,
we set c ¼ 0, and σ was determined by a linear fit (in time) of
VarðrX ÞðtÞ from Eq. S40 to the variance results obtained from
spiking simulations (Fig. 3D). The time constant τ was taken to
be 80 ms, corresponding to the synaptic time constant used in
the simulations. Then, for the spiking model with global cor-
relations, c was determined by fitting CovðrA; rBÞðtÞ from Eq. S41
to the CovðrA; rBÞðtÞ obtained from spiking simulations (Fig.
3E). We set σ to be equal to the value obtained from the local
simulations.

Probability of Correct Decision. To compute the probability of
a decision, we numerically integrated Pðr; tÞ from Eq. S35 over
the region determined by the decision boundary (quadrature
algorithm). The decision boundary line is given by rB ¼ rA þ Δ,
where the offset Δ is determined such that the line intersects the
unstable saddle point that appears during the decision phase
(full model in Eqs. S17 and S18).
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Fig. S1. Stimulus-specific persistent activity for the spiking networks with correlated fluctuations. (A) Network with uncorrelated external fluctuations; the
time series for three stimulus conditions (Left) shows stable persistent activity that is a reflection of the stimulus conditions. The rate activity in ðrA; rBÞ space
shows a clear separation for all three stimulus conditions. (B) Same as A but for the network with local correlations. (C) Same as A but for the network with
global correlations. The colors in all panels are as described in Fig. 1.
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Fig. S2. Nonlinear and linear phenomenological firing rate models. (A) Schematic of firing rate model with transfer fðxÞ, fluctuation variance σ2, and cor-
relation c. (B) Transfer function fðxÞ with μmax ¼ 60, τ ¼ 1, τr ¼ 0:01, β ¼ 1, and α ¼ 1. (C) Nullclines nA and nB (red curves) when α = 1 and gðαÞ ¼ −2:190813
chosen to minimize the integral of the square difference between nA and nB. Three realizations are shown (colors) with distinct initial conditions. (D) The
population coupling gðαÞ that yields the optimal line attractor. As α → ∞, the coupling g tends to −1. (E) Linear nullclines nA and nB for α → ∞ and g ¼ − 1.
Three realizations are shown (colors) with distinct initial conditions. (F) Comparison between trial variance (Upper) and covariance (Lower) computed from the
nonlinear (α ¼ 1) and linear models (α → 1).

Movie S1. Video showing the evolution of the probability density of population rates PðrA; rB; tÞ for 0< t < 10 s estimated from repeated trials of the spiking
network model. The local (Left) and global (Right) correlation schemes are shown. The ðrA; rBÞ grid was sampled at 1 Hz, and PðrA; rB; tÞ was smoothed for
presentation.

Movie S1
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Movie S2. Video showing the evolution of the probability density of population rates PðrA; rB; tÞ for 0< t < 10 s computed from the linear, random walk firing
rate model. The local (Left) and global (Right) correlation schemes are shown.

Movie S2
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