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Cortical neurons receive input with strong temporal fluctuations 
and produce spike trains with high variability1,2. Models of cortical  
networks often use balanced excitation and inhibition to account for 
this variability3–5. Consistent with these studies, balanced synaptic 
input has been measured in cortex6 and is thought to substantially 
influence cortical processing7. However, along with spike emission 
variability, cortical neurons show firing rate fluctuations over long 
timescales8–10. These stochastic dynamics reflect large trial-to-trial 
variability in cortical responses11–14. Balanced cortical networks 
with simple uniform connection structures do not capture these  
dynamics4,15. Our study’s central aim was to uncover which network 
features, beyond balanced architecture, are responsible for slow firing 
rate fluctuations in cortical networks.

Recent studies show that synaptic connections between excitatory 
neurons in cortex are clustered rather than uniform16,17. In visual 
cortex, clusters are related to processing, with highly connected 
neurons within a cortical column receiving similar visual input18,19. 
Clustering may also be related to activity level, with frequently  
firing neurons participating in clustered subnetworks20. In total, 
this suggests cortical wiring involving distinct, densely connected  
functional subnetworks.

Functional subnetworks are a popular architectural feature sup-
porting attractor dynamics in network models21–25. Such models 
typically have neuronal subpopulations with increased local excita-
tion, leading to a multitude of stable states in which particular sub-
populations exhibit sustained firing. Although attractor models have 
been studied in the context of memory storage, their connection to 
fluctuations in spontaneous and stimulus-evoked cortical dynamics 
has not been examined.

We investigated the dynamical consequences of clustered excita-
tory connections in balanced networks. In these networks, specific 
neuronal clusters increase or decrease their firing rates over long 

timescales, promoting high trial-to-trial variability. Stimuli that 
excite particular clusters bias activity in those clusters while recur-
rent inhibition suppresses others, placing the network collectively 
into particular activity states. Thus, stimulation reduces firing rate 
variability whereas Poisson-like spiking variability remains, consist-
ent with recent cortical recordings9. Our results show that even small 
perturbations from uniform connection structures—here a rewiring  
of only 3% of excitatory connections—can substantially change  
balanced network dynamics.

RESULTS
Clustering of connections yields new dynamics
Many real-world networks exhibit nonuniform connectivity struc-
tures, often including clustering of connections between different 
units26. Indeed, clustering of synaptic connections between pyramidal 
neurons in cortex has been observed in many studies16,17,19. However, 
inferring dynamical consequences from these architectural properties 
is challenging27. In cortex, the random nature of synaptic connectivity  
and individual neuron physiology adds to this difficulty. We used 
a simple model of excitatory clustering in a recurrent network to 
investigate its consequences for neural activity.

Our network consisted of 4,000 excitatory (E) and 1,000 inhibi-
tory (I) model neurons. Connections involving inhibitory neurons 
were nonspecific, occurring with probability pEI = pIE = pII = 0.5 
(refs. 28,29), where pxy denotes the probability of a connection from 
a neuron in population y to a neuron in population x. Connections 
between excitatory neurons occurred with probability pEE = 0.2. 
Synaptic dynamics were consistent with fast-acting excitatory and 
inhibitory neurotransmitters (see Online Methods).

We began by replicating the known asynchronous dynamics of uni-
form (non-clustered) balanced networks15 (Fig. 1, left). Neuronal 
membrane potentials exhibited fluctuations owing to a balance 
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Anatomical studies demonstrate that excitatory connections in cortex are not uniformly distributed across a network but instead 
exhibit clustering into groups of highly connected neurons. The implications of clustering for cortical activity are unclear. We 
studied the effect of clustered excitatory connections on the dynamics of neuronal networks that exhibited high spike time 
variability owing to a balance between excitation and inhibition. Even modest clustering substantially changed the behavior of 
these networks, introducing slow dynamics during which clusters of neurons transiently increased or decreased their firing rate. 
Consequently, neurons exhibited both fast spiking variability and slow firing rate fluctuations. A simplified model shows how 
stimuli bias networks toward particular activity states, thereby reducing firing rate variability as observed experimentally in many 
cortical areas. Our model thus relates cortical architecture to the reported variability in spontaneous and evoked spiking activity.
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between excitation and inhibition4 (Fig. 1c, left), and spiking activ-
ity was asynchronous (Fig. 1d, left). Our network models required no 
assumptions on the structure or timescale of external fluctuations, as 
variability arose solely from internal interactions4,5.

We next introduced clustered excitatory connections. The exci-
tatory population was partitioned into clusters of 80 neurons each, 
and the connection probability pEE was set to pin

EE for neuron pairs 
in the same cluster or pout

EE  for neuron pairs in different clusters. The  

ratio R
p
p

EE in
EE

out
EE=  controlled neuronal clustering. Higher values of REE 

favored connections within a local cluster over nonlocal connections. 
The quantities pin

EE and pout
EE  were chosen so that the connection prob-

ability between excitatory neurons remained 0.2 when averaged across 
all pairs. We also increased the synaptic strength for neurons in the 
same cluster17.

For a clustered network with REE = 2.5, visualizing the connectivity 
of a subset of excitatory neurons exposed clear divisions between dis-
tinct neuronal clusters (Fig. 1a,b, right). However, on average only 38 
of 800 excitatory connections that these neurons received came from 
within their local cluster, and others were randomly distributed from 
outside their cluster. In clustered networks, neurons exhibited dynamic 
transitions between periods of higher and lower firing rate (Fig. 1c,d, 
right). These fluctuations reflected changes in the average firing rate of  
neurons in the same cluster and coexisted with randomness in the 
spike times of any individual neuron, yielding dynamics substantially 
different from those of the uniform network despite the small change 
in architecture.

Spiking statistics for uniform and clustered networks
To quantify changes in network dynamics introduced by clustering, 
we calculated spike train statistics for excitatory neurons in uniform 
and clustered networks. The firing rate distribution was similar for 
both network types (3.3 ± 4.1 Hz for clustered and 2.0 ± 1.8 Hz for 
uniform networks; ± denotes s.d. across the population). Although 
neurons in the clustered network exhibited transient high activity 
states, both networks exhibited low, broadly distributed time-averaged 
firing rates, consistent with recordings from spontaneously active  
cortex30 (Fig. 2a).

To measure spiking variability, we calculated the spike count Fano 
factor for each excitatory neuron, defined as the ratio of trial-to-trial 
variance to mean of the number of spikes a neuron emits in a fixed 
time window (here 100 ms; see Online Methods). For a Poisson pro-
cess with a fixed firing rate, the Fano factor is 1, and Fano factors 
above 1 may be interpreted as evidence for variability in a neuron’s 
underlying firing rate. High Fano factors before and during stimulus  

application have been observed in many cortical systems1,9,31. 
In uniform networks, the mean Fano factor was 0.78 (s.d. 0.09;  
Fig. 2b). In clustered networks, it was substantially larger, with a 
mean of 1.4 (s.d. 0.7). This additional variability arose from firing rate 
fluctuations introduced by cluster state transitions from low to high 
activity (Fig. 1b). Because these transitions were stochastic, the con-
figuration of highly active clusters for any given moment across trials  
was variable.

Cortical variability is also reflected in the joint activity of neuron 
pairs32. Excitatory neurons in both network types exhibited near-
zero average spike count correlations (0.001 ± 0.06 for clustered and 
0.0005 ± 0.05 for uniform networks, Fig. 2c; see Online Methods), 
consistent with past theoretical studies of balanced networks15. 
However, differences emerged when the calculation of correlation 
was restricted to neurons in the same cluster. Clustered networks 
exhibited a distribution of correlation coefficients for intra-cluster 
pairs with a long positive tail and a mean of 0.13 (s.d. 0.18; Fig. 2d). 
The distribution’s tail reflected the slow correlated fluctuations in 
average firing rate that neurons experienced. Because intra-cluster 
pairs only accounted for 2% of all excitatory neuron pairs, this tail 
was not visible in the distribution of randomly sampled correlation 
coefficients (Fig. 2c).

To analyze this slow spiking activity, we computed spike train auto-
covariance and cross-covariance functions for excitatory neurons (see 
Online Methods). Neurons in uniform networks exhibited no long 
timescales in their autocovariance or cross-covariance functions, 
whereas in clustered networks both exhibited long timescale decays 
(Fig. 2e,f). Both functions indicated a weak oscillatory tendency in 
the gamma frequency range due to interactions between excitatory 
and inhibitory populations33.
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Figure 1 Comparison between uniform and clustered network 
connectivity and dynamics. (a) Schematic of recurrent network, showing 
excitatory (triangles) and inhibitory (circles) neurons. Connections 
within and between populations were nonspecific for the uniform 
network. Shaded regions in the clustered network schematic indicate 
subpopulations with increased connection probability and strength 
for neurons belonging to the same cluster. The full network contained 
4,000 excitatory neurons in 50 clusters of 80 neurons each and 1,000 
inhibitory neurons. (b) Visualization of connectivity for a subpopulation of 
240 excitatory neurons in three clusters. Nodes correspond to excitatory 
neurons; edges, synaptic connections. Nodes are positioned according 
to the Fruchterman-Reingold force algorithm (see Online Methods). 
Edge widths reflect synaptic strength. (c) Example voltage trace for 
an excitatory neuron. (d) Spike raster showing the spike times of a 
subpopulation of 1,600 excitatory neurons.
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Finally, we explicitly related the system’s long timescales to trial-
to-trial variability by computing Fano factors as a function of time 
window. Compared to an imbalanced network in which responses 
were mean-driven, Fano factors for balanced networks were sub-
stantially larger (Fig. 2g), although they were still sub-Poisson 
owing to refractory effects (Fig. 2e), saturating for time windows 
greater than 100 ms. However, Fano factors increased for longer 
time windows in clustered networks. In total, clustered networks 
had slow firing rate fluctuations while retaining the fast spiking 
variability characteristic of balanced networks, making neuronal 
activity effectively a ‘doubly stochastic’ process9,10,34.

Heterogeneity in cluster membership
In previous sections, we studied an idealized model in which all 
clusters were identically sized and neurons belonged to only one 
cluster. This connectivity led to discrete and unambiguous tran-
sitions between high and low activity states (Fig. 1). However, 
cortical assemblies may involve heterogeneity in size and overlap 
in membership. To determine whether our results hold for hetero-
geneous clustered networks, we generated a new network archi-
tecture in which cluster membership was random. Each excitatory 
neuron was assigned to two clusters out of 100 total, and connec-
tion probability and strength were increased for neuron pairs that 
shared membership in at least one cluster (Fig. 3a). Because of 
the random assignment of neurons to clusters, cluster sizes were  
heterogeneous (Fig. 3b).

Because neurons were not ordered by group membership, transi-
tions were not immediately apparent in an unordered raster (Fig. 3c). 
However, when rows in the raster were sorted by cluster, slow transi-
tions appeared (Fig. 3d). To compare homogeneous and heterogene-
ous clustered network dynamics, we calculated average firing rates for 
all neurons in individual clusters. Clusters in homogeneous networks 
exhibited discrete transitions between low and high activity states, 
with average firing rates of 50–60 Hz (Fig. 3e, top). In contrast, hetero-
geneous clustered networks exhibited more complicated temporal  
dynamics (Fig. 3e, bottom). Hence, networks with clustered architec-
tures can generate complex firing rate patterns reminiscent of those 
seen in spontaneous cortical recordings13, although our study’s pri-
mary results can be understood in the idealization of homogeneous 
clustered networks.

Increased clustering lengthens rate fluctuation timescale
We have shown that clustered connections introduce new, slow 
dynamics not present in uniform networks (Fig. 1). We next show 
that this timescale is related to the density of clustering.

We examined three different clustered network connectivities with 
REE increasing from 2 to 3. As REE increased, neurons were more 
easily separated into distinct clusters (Fig. 4a) and clusters exhibited 
longer periods of high activity (Fig. 4b). To quantify the firing rate 
fluctuations’ dependence on network connectivity, we calculated the 
average excitatory neuron Fano factor as a function of REE (Fig. 4c). 
Fano factors increased for sufficiently high clustering. The degree of 
clustering REE can be recast in terms of the percentage of excitatory 
connections that need to be rewired to generate a clustered network 
from a uniform one. This quantity was below 5% for the range studied 
(Fig. 4d). Thus only a small perturbation from uniform connectivity 
is required for substantial firing rate fluctuations.

Dependence of dynamics on cluster and network size
We next investigated whether changes in network dynamics were 
robust to different connectivity parameters. Above we saw that, above 
a critical level of clustering (approximately REE = 2.5), the network 
exhibited high firing rate variability. However, for large REE, transi-
tions occurred over very long timescales (Fig. 4b, right). Hence vari-
ability on biophysically relevant timescales should be maximized for 
a fixed level of clustering, a prediction we investigated by varying 
network parameters.

We evaluated cluster firing rate variability as a function of REE, 
for different network sizes N and cluster sizes C (Fig. 4e). For each 
combination of N and C, there existed a critical value of REE above 
which firing rate variability increased. However, variability eventually 
decreased for higher REE, when the transition timescale was longer 
than the simulation time. This was in contrast to the dependence of 
the Fano factor on clustering (Fig. 4c), as Fano factors were com-
puted across trials with different initial conditions whereas firing rate  
variability was computed over time.

The shape of these curves depended both on N and C. As C increased, 
the firing rate variability peak location and height decreased because 
more excitatory connections were present and cluster transition times 
diminished. However, the peak location increased as N grew because, 
in balanced networks, synaptic strength scales inversely with network  

Figure 2 Marginal and pairwise spiking 
statistics for neurons in clustered and uniform 
networks. Statistics for each network type  
were computed over 12 realizations for each  
of the two connectivities, with 9 trials for each 
realization of connectivity. (a) Histogram of  
excitatory neuron firing rates in clustered and 
uniform networks. Triangles mark mean value. 
(b) Histogram of excitatory neuron Fano factors 
computed over 100-ms windows. (c) Histogram 
of correlation coefficients computed over 50-ms  
windows for all excitatory neuron pairs.  
(d) Same as c, but only computed for neuron 
pairs belonging to the same cluster. The 
distribution of correlation coefficients for  
a random subset of pairs from the uniform 
network is shown, as the uniform network lacked 
clusters. (e) Average autocovariance function for 
excitatory neurons. (f) Average cross-covariance  
function for neuron pairs belonging to the same cluster. Correlation functions are normalized to firing rate. (g) Fano factors computed over different 
counting windows, comparing clustered, uniform and imbalanced networks. Imbalanced networks did not obey a balance between excitation and 
inhibition, and responses were mean-driven rather than fluctuation-driven (see Online Methods).
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size (see Online Methods). Because a peak occurred for each com-
bination of N and C, our results are robust to changes in network 
parameters. We further explore network scaling in the next section.

Theoretical analysis
Our results indicate that network architecture, more so than indi-
vidual neuron dynamics, gives rise to cluster state transitions. We 
therefore use a simplified binary neuron model to relate architecture 
to transitions. Similar analyses have been performed for memory net-
works15,24,35, but the timescale of spontaneous transitions between 
different states has not been examined.

Our model simplifies the state of neuron i, denoted si, to either 
inactive (si = 0) or active (si = 1). The input to neuron i, denoted Ii, 
is a weighted sum of the activities of the K excitatory and K inhibi-
tory neurons from which it receives input plus a constant mean bias: 
I J si ij j ij

= +∑ m , where µi is the bias and Jij is the strength of a synaptic 
connection from neuron j to neuron i. If Ii is positive, then the neuron 
is active; otherwise, it is inactive.

We began by studying a network whose connectivity was uniform 
except for a single cluster of C excitatory neurons. A neuron in the cluster  
receives K p Cin

EE
in
EE=  synaptic inputs from other neurons in the cluster. 

The mean and variance of the total input to such a neuron are

I J K s J K s J K sin
E

in
EE

in
EE

in
E

out
EE

out
EE

out
E EI I E= + + + m

Var in
E

in
EE

in
EE

in
E

out
EE

out
EE

out
E EI II J K s J K s J K s( ) = ( ) + ( ) + ( )2 2 2

Here Jxy denotes the strength of synaptic connections from neu-
rons in population y to those in population x, and sx  corresponds 
to the average activity of neurons in population x. Subscripts “in” 
and “out” refer to excitatory neurons within the cluster and outside 
the cluster, respectively. Because Var in

EI J K( )∼ 2 , we need J
K

∼
1  

for Var in
EI( ) to be O(1). As a consequence, Iin

E  will diverge as  
K  unless excitation and inhibition balance4.
Under these conditions, we analyzed the effect of local cluster input. 

The first term in equation (1) is the average recurrent excitation from 
other neurons in the cluster:

I J K srec in
EE

in
EE

in
E=

For Irec to be O(1) as K becomes large, we need K in
EE to be inversely 

proportional to Jin
EE. Because J

K
∼

1 , we therefore require

K Kin
EE ∼

(1)(1)

(2)(2)

(3)(3)

(4)(4)

In other words, for a balanced network, local cluster inputs may be 
much smaller in number (by a factor of K ) than total inputs K but 
still have a substantial effect. Indeed, as noted previously, neurons 
received on average only 38 of 800 total excitatory inputs from within 
their local cluster in our integrate-and-fire simulations. This sensitiv-
ity to rewiring is a consequence of the balance between excitation and 
inhibition; small deviations in balance due to local cluster activity 
strongly affect neurons’ firing rates.

Transitions between low and high activity states
With our simplified model, we next studied the dynamics of sin

E , 
the average firing rate of neurons in the cluster. We determined the 
potential energy landscape U that governed this quantity (see Online 
Methods). Minima in U correspond to stable values of sin

E . For small 
REE, the only minimum was at a low firing rate, so no transitions could 
occur (Fig. 5a). When REE increased sufficiently, a second minimum 
appeared, and sin

E  was therefore bistable, as is common in networks 
with local recurrent excitation21–24,35. Furthermore, because the 
cluster size was small, dynamic fluctuations due to finite size effects 
caused transitions between minima. Deeper potential wells corres-
ponded to more attractive activity states, as quantified by average 
time spent in a well (Fig. 5b).

Transitions between low and high activity states introduced long-
timescale variability to the cluster’s activity (Fig. 5c, top). Although 
transitions between wells were a source of variability in our model, we 
emphasize that they were not the only source of variability. Balanced 
excitation and inhibition ensured that neurons were bombarded with 
many synaptic inputs that produced high input variability relative to 
input mean, even when conditioned on their cluster being in one state 
(Fig. 5c, bottom). Model neurons were therefore doubly stochastic, 
with spike time variability because of this broad input distribution and 
firing rate variability because of transitions between wells.

What controls the timescale of these transitions? For deep enough 
wells and assuming that the effective noise driving average cluster 
activity is Gaussian and white, the transition time out of a well of 
depth ∆U will scale as

T e
k U
D∝
∆

where k is a constant and D is the amplitude of the effective diffu-
sion driving the fluctuations in mean activity36 (see Online Methods).  
D depends both on system size, with larger clusters exhibiting  
diminished fluctuations owing to averaging, and on correlations 
between neurons, which amplify fluctuations in mean activity.

As increased clustering increases the depth of the high activity state’s 
well (Fig. 5a), we expect highly clustered networks to take longer to 

(5)(5)

Figure 3 Heterogeneous clustered network.  
(a) Schematic of connectivity for heterogeneous 
network. Each excitatory neuron was assigned 
randomly to two clusters (schematic shows only 
a subset of neurons and clusters). Connection 
probability and strength was increased for any 
neuron pair that shared membership in at least 
one cluster. (b) Histogram of the number of 
neurons per cluster for the network shown in the 
following panels. Cluster size was heterogeneous 
because membership was assigned randomly. 
For this network, clusters ranged in size from 63 
to 99 neurons. (c) Spike raster showing the spike times of 1,600 excitatory neurons. As cluster membership was chosen randomly, the neurons are not 
ordered by cluster. (d) Same as c, but row indices reordered so that blocks of rows correspond to clusters. Some rows are repeated, as neurons belonged 
to more than one cluster. (e) Example average firing rates for different clusters from the homogeneous clustered network studied in Figures 1 and 2 and 
the heterogeneous network. Rates were estimated from the number of spikes emitted by all neurons in a cluster in a sliding window of 100 ms.
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transition out of this state. To verify this prediction, we measured the 
average transition time out of the high activity state for networks with 
different degrees of clustering and plotted the result as a function of ∆U 
(Fig. 5d). The logarithm of T increased linearly with ∆U, as predicted by 
equation (5). In total, architectural clustering controls U and hence the 
presence of bistability and the attractiveness of high activity states.

We next sought to understand how clusters interact. So far, our analy-
sis had focused on a single cluster’s dynamics, neglecting its influence on 
other clusters or the possibility of other clusters changing state. Indeed, 
if every cluster was independent and all were governed by the potential 
in Figure 5b, we would expect most clusters to remain in the high 
activity state and average activity to be unrealistically high. In the fully  

recurrent network, this is not the case. 
Recurrent inhibition mediates cluster–cluster 
interaction, limiting the number of clusters 
simultaneously in the high activity state and 
thus promoting transitions. We examine this 
more closely as we next consider the relation-
ship between stimulation and clustered net-
work dynamics.

Biasing activity state with stimulation
The relationship between spontaneous and evoked trial-to-trial vari-
ability has recently attracted attention9,37. Throughout the cortex, 
trial-to-trial spiking variability is reduced in driven conditions, when 
compared to that measured in spontaneous states9. Despite its gen-
erality, the mechanisms responsible for this variability reduction are 
undetermined. With our theory, we examined stimulation’s effects on 
variability in clustered networks.

We calculated the potential U for different stimulus values (Fig. 6a). 
Negative stimuli made the high activity state less attractive, while 
positive stimuli increased its attractiveness. This, along with previous 
 observations about recurrent inhibition, leads to a prediction about 

Figure 5 Emergence of bistability in simplified 
model. (a) Potential governing dynamics of 
average cluster activity sin

E , for different  
values of clustering REE. As clustering  
increases beyond a critical value, bistability 
emerges (black curve) and switches (arrow)  
can occur between the two stable states.  
(b) Potential (top) and corresponding histogram 
for average cluster activity (bottom). (c) Top: 
example activity raster for the parameters in b. 
Transitions are evident between the high  
activity (red) and low activity (blue) states. 
Bottom: histogram of input currents for neurons in the cluster conditioned on the cluster being in the low or high activity state (defined as average 
activity less than or greater than 0.5, respectively) and normalized in peak height. (d) Average timescale of transitions from high activity to low activity 
state as a function of well depth ∆U. Each point corresponds to an average over four networks simulated for 200,000 time steps. The line corresponds to 
a linear regression of well depth against the logarithm of the transition time (coefficient of determination R2 = 0.89).
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Figure 4 Effect of increased clustered 
connection probability. (a) Visualization of 
connectivity for a subset of 240 neurons in 
three different networks. The network for  
REE = 2.5 is identical to the network shown in 
Figure 1, right. (b) Spike raster for a subset of 
1,600 excitatory neurons from the three different 
network configurations. As clustering increased, 
the timescale of cluster-activity state transitions 
lengthened. (c) Average Fano factor computed 
over 100-ms windows among excitatory neurons 
as a function of REE. (d) Average percentage 
of excitatory (exc.) connections rewired as 
a function of REE. Percentage rewired was 
defined by calculating the average number of 
connections an excitatory neuron received from 
other neurons in its cluster, subtracting the 
average number of such connections it would 
have received if REE = 1 and dividing by the total 
number of connections. (e) Dependence of firing 
rate variability on clustering REE, for different 
values of cluster size C and total network size N.  
The firing rate variability for each cluster was 
estimated by computing the population firing 
rate for the C neurons in the cluster over 2 s, 
in 20 windows of 100 ms each. This was then 
averaged over all clusters and realizations.
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network dynamics under stimulation. Without stimulation, clusters are 
symmetric and any cluster may transition between states (Fig. 6b, left). 
When a fraction of clusters are stimulated, this symmetry is broken 
and stimulated clusters are more likely to have high activity. Recurrent 
inhibition discourages other clusters from transitioning to high activity 
states, forcing the entire network into a single configuration and thus 
suppressing long-timescale variability (Fig. 6b, right). We next inves-
tigate this prediction, returning to a full spiking network.

Effect of stimulation on spiking variability
Because our spiking model exhibited high trial-to-trial variability 
consistent with cortical data, we investigated the effect of stimula-
tion, using a simple depolarizing stimulus 
applied to 5 of the 50 clusters for 400 ms. 
During spontaneous activity, clusters exhib-
ited transitions. When the stimulus was 
applied, stimulated clusters became highly 
active, while unstimulated clusters were sup-
pressed (Fig. 7a,b). After stimulus applica-
tion ceased, the system eventually relaxed to  
spontaneous dynamics.

To quantify reductions in variability, we calcu-
lated the mean-matched Fano factor over 100-ms 
windows as a function of time. Mean matching 
controlled for stimulus-induced changes in 
firing rate, ensuring that observed changes in 
Fano factor were due to a change in underlying 
rate variability9. For clustered networks, Fano  
factors were above 1 during spontaneous activity 
but dropped slightly below 1 during stimulation 
(Fig. 7c). Similar results were obtained for hetero-
geneous clustered networks (Supplementary 
Fig. 1), clustered networks with more complex 
stimulus tuning (Supplementary Fig. 2) and 
clustered networks with ring or feed-forward 
structure (Supplementary Fig. 3). In contrast, 
uniform networks exhibited no noticeable 
decrease in variability when the stimulus was 
applied (Fig. 7c). The Fano factor restricted to 

either stimulated or unstimulated neurons also exhibited a reduction in 
Fano factor only for clustered networks (Fig. 7d). These results are consist-
ent with cortical recordings in which neurons whose preference did not 
match a presented stimulus nevertheless showed a stimulus-induced drop in 
variability9, a feature not present in other models of cortical variability25.

Variability of inhibitory neurons
To this point we have been exploring excitatory neuron spiking variabil-
ity, but inhibitory neuron variability may also be stimulus dependent. 
In visual area V4, a reduction in inhibitory neuron Fano factor with 
stimulation has been reported38, but firing rates increased substantially 
during stimulation, and no rate matching was performed to control for 
this modulation. We show that inhibitory neurons in clustered net-
works may also exhibit decreased Fano factors due to stimulation, an 
effect that depends on the specificity of their afferent connections from 
excitatory neurons.

In the above model, the connections involving inhibitory neurons 
were uniform. Anatomical evidence suggests that inhibitory inner-
vation of pyramidal neurons is nonspecific29, but there is some evi-
dence for selectivity in excitatory input to certain classes of inhibitory 
interneurons39. We therefore studied the dependence of inhibitory 
neuron variability on excitatory-to-inhibitory input specificity.

We compared the clustered networks presented previously to ones 
in which inhibitory neurons were more likely to receive input from 
excitatory neurons in a particular cluster (Fig. 8a). In clustered E+I 
networks, we assigned inhibitory neurons to 50 clusters of 20 neurons 
each. Excitatory-to-inhibitory connections occurred with probability 
pin
IE if both neurons belonged to the ith cluster of their respective popu-

lation and otherwise with probability pout
IE . R

p
p

IE in
IE

out
IE=  was set to 1.5.

Excitatory neurons in both networks had high variability and 
exhibited a reduction in Fano factor with stimulus (Fig. 8b). However, 
inhibitory neuron Fano factors in clustered E+I networks increased 

Figure 7 Effect of stimulation on spiking variability and dynamics. (a) Spike raster showing the activity 
of 1,600 excitatory neurons on one trial. Neurons in the shaded region received the stimulus when 
applied. (b) Time course of stimulus, a depolarizing step of current that lasted 400 ms. The stimulus 
caused the clusters that received it (a, shaded region) to transition into a high activity state. (c) Fano 
factor computed over 100-ms windows as a function of time for excitatory neurons. For comparison, 
the average Fano factor for uniform networks receiving an identical stimulus is shown. Only clustered 
networks exhibited a noticeable decrease in variability when stimulated. Shaded regions denote 
95% confidence intervals. (d) Left: same as c, but restricted to neurons in stimulated clusters 
(corresponding to a, shaded region). Right: same as left, but restricted to neurons not in stimulated 
clusters. Fano factors were computed using mean-matching techniques presented in ref. 9.
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(b) Consequences of stimulation and recurrent inhibition. Left: when 
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substantially compared to the clustered excitatory network, with a 
correspondingly greater reduction with stimulation (Fig. 8c). Thus, 
excitatory input specificity can drive stimulus-induced variability 
reduction in inhibitory neurons. Studies have shown that the specifi-
city of excitatory input to different inhibitory cell classes varies39, with 
fast-spiking interneurons receiving more specific input than adapting 
interneurons. We predict that adapting interneurons should therefore 
exhibit a smaller effect of stimulus on variability.

DISCUSSION
We have shown that clustering of excitatory connections16,17,19 sub-
stantially changes balanced network dynamics. Small perturbations 
of connectivity that introduced excitatory clustering yielded dynami-
cal phenomena observed in cortex experimentally but not present in 
simple uniform networks: slow firing rate fluctuations in spontane-
ous conditions and stimulus-induced reductions in trial-to-trial rate  
variability with spike time variability remaining intact9.

Anatomical realism and attractor dynamics
The network connectivity in this study was motivated by  
anatomical evidence for clustering of connections between pyramidal 
neurons in cortex. Bidirectional and clustered three-neuron connec-
tion motifs occur with frequencies significantly above chance in the 
visual system16. These subnetworks also receive similar feedforward 
input, suggesting that clustering may be related to functional maps18, 
an idea with recent in vivo support19. Inhibitory projections were 
not similarly clustered in our model, consistent with studies show-
ing that inhibitory neurons connect densely and nonspecifically to  
pyramidal neurons29 and that inhibitory neuron connectivity is less 
tuning specific than that of pyramidal neurons40.

The dynamics we investigated are reminiscent of persistent state 
activity, often studied in attractor networks with highly segregated 
subnetworks22,25. Spatially dependent connection probabilities can 
also lead to persistent activity when excitation is more local than 
inhibition41. Our result for clustered networks, although it involves 
excitation to a local subset of neurons, assumes neither a spatial dis-
tribution of connections nor an excessive reorganization from an 
unstructured network. Similar results are obtained in networks with 
spatially dependent connection structures, as long as an underlying 
multistability is present (Supplementary Fig. 3).

Robustness and dependence of cluster size
Our results depended on cluster size, and our parameter choices are 
consistent with anatomical evidence for fine-scale clusters of tens, 
rather than thousands, of neurons17. Large-scale, biophysically realistic 

network models have shown clusters of this size emerging with spike 
time–dependent plasticity42. For a variety of cluster and network sizes, 
high firing rate variability emerged in our model (Fig. 4). Because larger 
clusters have smaller fluctuations in mean firing rate owing to averag-
ing, very large clusters were unlikely to exhibit frequent transitions and 
also tended to suppress smaller clusters (Fig. 3). However, large-scale 
correlated fluctuations, adaptation or other mechanisms not modeled 
in our study could promote transitions even for very large clusters.

We also note that our model exhibits sharp transitions between attrac-
tor states with large differences in firing rate (Fig. 3e). These shifts are 
consistent with rapid state transitions observed in behaving animals43. 
Although average firing rates in our model are consistent with spon-
taneous data (Fig. 2a), activity within active clusters is more regular 
than typically recorded in spontaneous activity. This observation has 
been made in previous studies of bistability in balanced networks21–23. 
Exactly matching higher order spike train statistics is difficult, yet the 
agreement for time-averaged firing rate and spike train variability is 
promising. As such, clustered networks provide a simplified framework 
for studying multistability and the spiking variability it produces.

Models of cortical variability and co-variability
Recently, it has been shown that uniform, balanced networks evolve to an 
asynchronous state in which correlations are negligible even when connec-
tions are dense15, consistent with some experimental data44. The distribu-
tion of correlation coefficients in clustered networks has a near-zero mean, 
similar to that in these studies (Fig. 2c). However, neuron pairs within the 
same cluster do exhibit nonzero correlations (Fig. 2d). Assuming that clus-
ters are related to functional processing, this observation is consistent with 
experimental studies showing that correlations are enhanced for similarly 
tuned neurons8,32 and predicts that measured correlations will depend on 
the subset of neurons to which recording is restricted.

Other modeling studies have examined networks exhibiting high 
variability from conductance modulations or other biophysical prop-
erties5,45, but long-timescale firing rate variability (Fig. 2g) has not 
been addressed. Our minimal model captures the distributions of 
firing rates30 (Fig. 2a), pairwise spiking correlations32,44 (Fig. 2c,d,f) 
and rate variability9 (Fig. 2b,e) characteristic of spontaneous, 
 unanesthetized cortex. However, dual whole-cell recordings from 
spontaneously firing excitatory neurons in the somatosensory cortex 
of awake rodents show prominent, low-frequency correlated mem-
brane potential fluctuations46. Our model does not capture this cor-
relation, nor does any other spiking model (to our knowledge) lacking 
externally imposed variability. Imaging studies suggest that the cor-
related fluctuations are likely due to traveling waves between motor 
and sensory cortex47, and spatial effects would need to be introduced 
into a model to properly account for these dynamics (Supplementary 
Fig. 3). Nonetheless, this membrane potential correlation does not 
transfer to synchronous excitatory neuron spiking46, presumably 
owing to sparse firing in the spontaneous state. Understanding the 
source of these fluctuations is an important topic for future study.

Relationship between spontaneous and evoked activity
Patterns of neuronal activity evoked by sensory stimulation are thought to 
be a subset of those sampled during spontaneous activity12,14. Clustered 
network dynamics are consistent with this idea, with activity states sam-
pled stochastically in spontaneous conditions and biased toward particular 
states with stimuli. The relationship between strong local connectivity 
and increased attractiveness of high-activity states (Fig. 4) suggests that 
Hebbian plasticity may wire together stimulated clusters so that they are 
sampled more frequently. Thus, the spontaneous state’s statistics would 
reflect past stimulus input statistics, as reported in visual cortex48.

Figure 8 Effect of stimulation on inhibitory neuron spiking variability. 
(a) Schematic of network connectivity for the clustered E+I network. 
Excitatory projections were cluster-specific, whereas inhibitory projections 
were uniform. (b) Mean-matched Fano factor computed over 100-ms 
windows as a function of time for excitatory neurons in the clustered E+I 
network and the clustered E network (Fig. 7). Shaded region denotes 95% 
confidence interval. (c) Same as b but for inhibitory neurons.
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Observations of reductions in single-neuron trial-to-trial variability 
from spontaneous to evoked conditions complement the above data9. 
In describing these results, spiking activity is typically characterized 
as a doubly stochastic process, in which variability in spike emis-
sion and rate dynamics can be separated. While this simplification is 
attractive, the two are not easily segregated in mechanistic models. 
Stimulus-induced reductions in variability have been studied in firing 
rate models37; however, these models implicitly separate firing rate 
and spiking variability. In contrast, a recent attractor-based study25 
also modeled variability reduction but assumed doubly stochastic 
external inputs. We studied generation of both rate and spike time 
variability by internal network interactions, providing mechanistic 
plausibility for the intuition presented in ref. 9.

Finally, our work begins to link cortical architecture, variability and 
computation. There is growing evidence that probabilistic inference is 
central to neural coding10,49. Rich, stochastic spontaneous dynamics 
may reflect sampling that supports probabilistic inference50. Merging 
attractor theories of computation with probabilistic coding schemes 
is an important direction for systems neuroscience, for which a clear 
theory of neural variability in cortical circuits will be needed.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Spiking network simulations. Neurons were modeled as leaky integrate-and-fire 
units whose voltages obey

V V I= − +1
t

m( ) syn

When neurons reach a threshold Vth = 1, a spike is emitted and they are reset to 
Vre = 0 for an absolute refractory period of 5 ms. The membrane time constant τ 
was 15 ms and 10 ms for excitatory and inhibitory neurons, respectively. The bias 
µ was chosen according to a uniform random distribution between 1.1 and 1.2 for 
excitatory neurons and between 1 and 1.05 for inhibitory neurons. Although these 
values are suprathreshold, balanced dynamics ensured that the mean membrane 
potentials were subthreshold4. In Figure 1, the nondimensionalized voltages were 
transformed so that Vth = –50 mV and Vre = −65 mV.

Synapses between neurons were modeled as differences of exponentials, and 
the total synaptic input to neuron i in population x was:

I t J F s ti
x

ij
xy y

j
y

jy, ( ) ( )syn = ∗∑

where x y, ,∈{ }E I  denote excitatory or inhibitory populations of NE = 4,000 
and NI = 1,000 neurons each, Jij

xy  is the strength of synaptic connections from 
neuron j in population y to neuron i in population x, F ty ( ) is the synaptic filter 
for projections from neurons in population y, * denotes convolution and s tj

y ( ) is 
the spike train of neuron j in population y, a series of δ-functions at time points 
where the neuron emits a spike.

F t e ey t t( ) / /=
−

−





− −1

2 1
2 1

t t
t t

with τ2 = 3 ms for excitatory synapses and 2 ms for inhibitory synapses, and  
τ1 = 1 ms. Connection probabilities pxy from neurons in population y to x were  
pEI = pIE = pII = 0.5; pEE was on average 0.2 for all networks but depended on clus-
tering as described in the main text. If a connection from neuron j in population 
y to neuron i in population x existed, J Jij

xy xy=  (unless x,y = E and neurons were 
in the same cluster; then connection strength was multiplied by 1.9 for homoge-
neous clustered networks and 1.8 for heterogeneous clustered networks); other-
wise Jij

xy = 0. Synaptic strengths were JEE = 0.024, JEI = –0.045, JIE = 0.014 and  
JII = –0.057. These parameters, multiplied by 15 mV, would give the deflection of 
the membrane potential of the postsynaptic target, neglecting leak, in our dimen-
sionalized units. When clusters of excitatory neurons were stimulated (Fig. 7), 
stimulation was accomplished by increasing µ for neurons in those clusters by 0.07. 
Simulations were performed using Euler integration with a time step of 0.1 ms.

To generate an imbalanced network (Fig. 2, dashed curve), we assumed weak 
synapses by reducing JEE and JIE by a factor of 20 and chose µE uniformly between 
1.05 and 1.15. Consequently, excitatory neurons were mean-driven rather than 
fluctuation-driven.

Finally, to vary the size of the network (Fig. 4e), we kept all network parameters 
the same except that we scaled the connection strengths Jxy by a factor propor-
tional to 1/ N , so that the Jxy values were multiplied by 2  for the network with 
N = 2,500 and 1 2/  for N = 10,000.

Visualizing and measuring clustering. Visualizations of connectivity for subsets 
of the excitatory networks in Figures 1 and 4 were created using NetworkX (http://
networkx.lanl.gov/). The layout of nodes was performed using the Fruchterman-
Reingold force-directed algorithm51, which places connected nodes nearby and 
yields layouts that respect the clustering of the network. For the purposes of these 
analyses, connections were taken to be undirected and unweighted.

Spike train statistics. Spike train statistics were computed for excitatory neurons. 
We denote the spike times of neuron i as t t ti i i1 2 3, , , ...{ }. We can then define 
neuron i’s spike train: y t t ti ikk( ) ( )= −∑ d . The number of spikes emitted by 
the neuron between times t and t + ∆t is

N t t t y t dti it
t t

( , ) ( )+ = ′ ′
+

∫∆
∆

The firing rate of a neuron over an interval (t, t + ∆t) is defined as

r t t t
t
N t t ti i( , ) ( , )+ = +∆

∆
∆1

For the networks studied, firing rates and other statistics for the spontaneous 
state were calculated with t = 1.5 s to prevent effects due to initial conditions 
and ∆t = 1.5 s.

We also computed the Fano factor Fi(t, t + ∆t) for neuron i by evaluating

F t t t
N t t t

N t t ti
i

i
( , )

( , )
( , )

+ =
+( )

+
∆

∆
∆

Var

where the expectations are over repeated trials of the same network with random 
initial conditions. When computing the Fano factor as a function of time rela-
tive to stimulus onset, we computed the mean-matched Fano factor described 
in ref. 9 to control for changes in firing rate. Fano factors were computed over 
100-ms windows.

We computed correlation coefficients for the spike counts of neuron pairs.  
The correlation between neurons i and j was given by

rij
i j

i j

N t t t N t t t

N t t t N t t t
=

+ +( )
+( ) +

Cov

Var Var

( , ), ( , )

( , ) ( , )

∆ ∆

∆ ∆(( )
where the covariances and variances were computed over overlapping windows 
within each trial and then averaged across trials.

Finally, we computed the mean-subtracted spike train autocorrelation and 
cross-correlation functions C Tii( ) and C Ti j≠ ( ). These were defined as

C T y t y t T dt r t t t r t t tij i j i jt
t t

( ) ( ) ( ) ( , ) ( , )= ′ ′ − ′ − + +
+

∫ ∆ ∆
∆

To estimate this quantity, spike trains were discretized with a time step of 
δ t = 2 ms, so that y t y ti i n( ) ( )→  with t n tn = d  and y t N t t ti n i n n( ) ( , )= + d .  
Then C T y t y t T r t t t r t t tij i n j n in j( ) ( ) ( ) ( , ) ( , )= − − + +∑ ∆ ∆  with T t= −{..., , ,d 0  
dt, ...} and n such that t t t tn ∈ +( ), ∆ .

Analysis of simplified network model. For our binary network model, the activity 
of neuron i in population x was given by s t I ti

x
i
x( ) ( ) ,= ( ) ∈{ }Q 0 1 , where I ti

x ( ) is the 
input to the neuron and Θ is the Heaviside step function. For simplicity, excitatory 
and inhibitory populations both consisted of NE = NI = 4,000 neurons with an aver-
age connection probability of 0.2 for all connection types, so that neurons received 
K = 800 connections on average from each population. The input was given by

I t J s ti
x

ij
xy

j
y x

jy( ) ( )= +∑ m

where mE = 0 075. K  and mI = 0 05. K . The presence of synaptic connections, 
including the effects of clustering, was determined in the same way as in the 
spiking networks, although for our initial analysis only one cluster was gener-
ated in the network.

In balanced networks, it is assumed that the synaptic strengths scale as 
J K∼1/  so that the input variance remains constant as K grows4. In our 
network, the synaptic strengths were J KEE = 1/  (unless neurons belonged 
to the same cluster, in which case connection strength was multiplied by 1.5), 
J KEI = −1 2. / , J KIE = −1/  and J KII = −1/ . Simulations were performed 
using discrete time steps, on each of which NE + NI neurons were chosen ran-
domly and updated asynchronously.

For uniform networks, the average activity of neurons in each population, 
sE  and sI , can be calculated in the infinite K limit4:

s J J
K J J

s
K J J

E
II E EI I

EI II
I

E I

EI II
= −

−( ) = −
−( )

m m m m,

Furthermore, by assuming that each neuron is independent and is active  
randomly and sparsely, the input variances can be calculated:

Var

Var

E EE E EI I

I IE E II I

( ) ( ) ( )

( ) ( ) ( )

I J K s J K s

I J K s J K s

= +

= +

2 2

2 2

(6)(6)

http://networkx.lanl.gov/
http://networkx.lanl.gov/
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Assuming the input distribution is Gaussian, we have

s
I

I

x
x

x
=

−

( )
1
2 2
erfc

Var

which allows us to infer the mean input I I sx x x= − ( ) ( )−2 21Var erfc .
To analyze the effect of clustering, we calculate the deviation from the  

mean input in a uniform network induced by the presence of clustered  
connections. This approach has been taken in previous studies of memory  
networks23,24,35. In a uniform network, the mean input is given by

I J K s J K sE EE E EI I E= + + m

For a clustered network, we assume that the mean firing rate of neurons outside 
the cluster is given by s sout

E E= , whereas inside the cluster sin
E  may vary. 

Hence, the mean input to neurons in the cluster is

I J K s J K s J K sin in in in out out
E EE EE E EE EE E EI I E= + + + m

where Kin
EE  denotes the average number of connections from inside the cluster. 

With m ∼ K , the final three terms in equation (7) are O K( ) but are balanced 
by the recurrent network dynamics, ensuring that their contribution does not 
diverge as K becomes large.

We next calculate ∆I I Iin in
E E E= − :

∆I K J s J sin in in in out
E EE EE E EE E= −( )

For cluster activity to have an effect on the mean input a neuron receives, this  
difference must be O(1), which implies that K J Oin in

EE EE ∼ ( )1 . As J Kin
EE ∼1/ ,  

(7)(7)

this implies that K Kin
EE ∼ , so that the number of local cluster inputs scales as 

the square root of the total number of connections. In particular, for large K, 
K Kin

EE .
We next analyze the time dynamics of the average cluster activity. The dynam-

ics will follow52

sin
E

in
in

in
in

E
E E

E E
Eerfc

Var

i
= − +

− +( )
( )

≡ ( )s
I I

I

d
d s

U s1
2 2

∆

where we have defined a potential U as the integral of sin
E
i

 with respect to 

sin
E . Minima of this potential correspond to self-consistent solutions of aver-

age cluster activity. This potential can be obtained using the equations defined  

above (for Fig. 5b, empirically measured values of sE  and sI  were used 

in the calculations, to correct for deviations from equation (6) due to finite  
size effects).

Assuming that the fluctuations in sin
E

 can be modeled as Gaussian white 
noise and are small relative to well depth ∆U, the average transition time T out of 
a potential well should follow the Kramers formula36 T ek U D∝ ∆ / , where D is the 
diffusion coefficient governing the fluctuations of the mean activity. While we can 
calculate ∆U using our theory above, the effective D depends on system size and 
correlations and cannot be easily evaluated. Nonetheless, we find a relationship 
between ∆U and T consistent with the Kramers formula (Fig. 5d).

51. Fruchterman, T.M.J. & Reingold, E.M. Graph drawing by force-directed placement. 
Softw. Pract. Exp. 21, 1129–1164 (1991).

52. Glauber, R. Time-dependent statistics of the Ising model. J. Math. Phys. 4, 294–307 
(1963).
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